Ergodicity Coefficients Defined by Vector Norms

نویسندگان

  • Ilse C. F. Ipsen
  • Teresa M. Selee
چکیده

Ergodicity coefficients for stochastic matrices determine inclusion regions for subdominant eigenvalues; estimate the sensitivity of the stationary distribution to changes in the matrix; and bound the convergence rate of methods for computing the stationary distribution. We survey results for ergodicity coefficients that are defined by p-norms, for stochastic matrices as well as for general real or complex matrices. We express ergodicity coefficients in the one-, two-, and infinitynorms as norms of projected matrices, and we bound coefficients in any p-norm by norms of deflated matrices. We show that two-norm ergodicity coefficients of a matrix A are closely related to the singular values of A. In particular, the singular values determine the extreme values of the coefficients. We show that ergodicity coefficients can determine inclusion regions for subdominant eigenvalues of complex matrices, and that the tightness of these regions depends on the departure of the matrix from normality. In the special case of normal matrices, two-norm ergodicity coefficients turn out to be Lehmann bounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving the Closest Vector Problem with respect to ℓp Norms

We present deterministic polynomially space bounded algorithms for the closest vector problem for all lp-norms, 1 < p < ∞, and all polyhedral norms, in particular for the l1norm and the l∞-norm. For all lp-norms with 1 < p < ∞ the running time of the algorithm is p · log2(r)n, where r is an upper bound on the size of the coefficients of the target vector and the lattice basis and n is the dimen...

متن کامل

Lower Estimates of Transition Densities and Bounds on Exponential Ergodicity for Stochastic Pde’s B. Goldys and B. Maslowski

A formula for the transition density of a Markov process defined by an infinitedimensional stochastic equation is given in terms of the Ornstein Uhlenbeck Bridge, and a useful lower estimate on the density is provided. As a consequence, uniform exponential ergodicity and V-ergodicity are proven under suitable conditions for a large class of equations. The method allows us to find computable bou...

متن کامل

Lower Estimates of Transition Densities and Bounds on Exponential Ergodicity for Stochastic Pde’s

A formula for the transition density of a Markov process defined by an infinite-dimensional stochastic equation is given in terms of the Ornstein–Uhlenbeck bridge and a useful lower estimate on the density is provided. As a consequence, uniform exponential ergodicity and V ergodicity are proved for a large class of equations. We also provide computable bounds on the convergence rates and the sp...

متن کامل

Ellipticity and Ergodicity

Let S = {St}t≥0 be the submarkovian semigroup on L2(R ) generated by a self-adjoint, second-order, divergence-form, elliptic operator H with Lipschitz continuous coefficients cij . Further let Ω be an open subset of R . We prove that S leaves L2(Ω) invariant if, and only if, it is invariant under the flows generated by the vector fields Yi = ∑d j=1 cij∂j .

متن کامل

Ergodicity of Quantum Cellular Automata

We define a class of dynamical maps on the quasi-local algebra of a quantum spin system, which are quantum analogues of probabilistic cellular automata. We develop criteria for such a system to be ergodic, i.e., to possess a unique invariant state. Intuitively, ergodicity obtains if the local transition operators exhibit sufficiently large disorder. The ergodicity criteria also imply bounds for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 32  شماره 

صفحات  -

تاریخ انتشار 2011